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ABSTRACT

Short interfering RNA (siRNA) may down-regulate
many unintended genes whose transcripts possess
complementarity to the siRNA seed region, which
contains 7 nt. The capability of siRNA to induce
this off-target effect was highly correlated with the
calculated melting temperature or standard free-
energy change for formation of protein-free seed
duplex, indicating that thermodynamic stability
of seed duplex formed between the seed and
target is one of the major factor in determining the
degree of off-target effects. Furthermore, unlike
intended gene silencing (RNA interference), off-
target effect was completely abolished by introduc-
tion of a G:U pair into the seed duplex, and this loss
in activity was completely recovered by a second
mutation regenerating Watson–Crick pairing, indi-
cating that seed duplex Watson–Crick pairing is
also essential for off-target gene silencing. The
off-target effect was more sensitive to siRNA con-
centration compared to intended gene silencing,
which requires a near perfect sequence match
between the siRNA guide strand and target mRNA.

INTRODUCTION

A growing body of evidence from large-scale knockdown
experiments (1–5) suggests that short interfering RNA
(siRNA) could generate off-target effects through a
mechanism similar to that of target silencing by
microRNAs (miRNAs) (6–8), which influence the expres-
sion levels of many transcripts in a tissue-specific manner
(9). The 30 UTRs of off-target transcripts or miRNA
targets are complementary to the guide strand (GS)
seed region, nucleotide positions 2–8 (Supplementary
Figure S1) (3–6). Within cells, the GS binds to Ago to

form an RNA-induced silencing complex (RISC) (10,11).
In RISC, the seed nucleotides are presumed to be present
on the surface of Ago in a quasi-helical form to serve as
the entry or nucleation site for mRNA (12,13). However,
little is known about the molecular basis that determines
the efficiency of seed-dependent off-target gene silencing.
To clarify this point, using a reporter system and micro-
array profiling, we examined the relationship between
stability of the protein-free seed duplex and the capability
of siRNA to induce off-target effects.

MATERIALS AND METHODS

Cell culture

Human HeLa cells were cultured and subjected to gene
silencing as described previously (14,15). Cells were plated
into an individual well of 24-well culture plate at
1� 105 cells/ml (1ml/well) 24 h prior transfection.
Transfection was carried out using Lipofectamine 2000
(Invitrogen). Sequences of siRNAs chemically synthesized
(Proligo) are listed in Supplementary Table S1.

Plasmid construction and gene-silencing assay

All plasmids constructed are derivatives of psiCHECK-1
(Promega). Chemically synthesized 75-bp-long ds oligonu-
cleotides, each including three tandem repeats of an iden-
tical 23 bp (Supplementary Table S2) and cohesive XhoI/
EcoRI ends, were inserted into the corresponding restric-
tion enzyme sites of psiCHECK-1 to generate psiCHECK-
cm and psiCHECK-sm (Figure 1A and B). Inserted cm or
sm targets, each 21 nt in length, were expressed as part
of the 30 UTR of Renilla luc mRNA in transfected cells.
The completely matched target (cm) matches the siRNA
GS completely, whereas the seed-matched (sm) target
consists of two parts. 30 terminal 8 nt of the target are
complementary in sequence to the 50 end (nucleotide posi-
tion 1) and the seed (positions 2–8) of the corresponding
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Figure 1. Off-target gene silencing assay using reporter plasmids. Structures of (A) psiCHECK-cm and (B) psiCHECK-sm (the luc transcript of
which, respectively, presents three tandem repeats of cm and sm in the 30 UTR, shown with thick arrows). (C) Gene-silencing activities of 26 siRNAs
were examined in HeLa cells as a function of siRNA concentration. In most cases, luc mRNA with cm was effectively inactivated. In contrast,
inactivation of mRNA with sm varied significantly, depending on the siRNA concentration used for transfection. Sequences of siRNA, cm targets
and sm targets are shown in Supplementary Tables S1 and S2. (D) Simultaneous reduction in mRNA amount and luc activity in psiCHECK-
transfected cells. Ordinate represents relative luc activity (%) in different psiCHECK-sm and -cm transfected cells. Abscissa represents relative
amount of luc mRNA (%) in the corresponding psiCHECK-sm and -cm transfected cells. Results strongly suggest that the reduction of luc activity
(protein activity) is due mainly to gene-silencing-dependent degradation of the corresponding mRNA.
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siRNA GS, while the remaining 13 nt are totally unhomo-
logous to the GS (Supplementary Table S2).
HeLa cells in a well of 24-well culture plate were trans-

fected simultaneously with one of psiCHECK derivatives
constructed above (10 ng), pGL3-Control (Promega, 1 mg)
or phLuc-Control (0.5 mg) (14) and siRNA (0.05–50 nM).
Cells were harvested 24 h after transfection and relative
luc activity (Renilla luc activity/firefly luc activity) was
determined using the Dual-Luciferase Reporter Assay
System (Promega). pGL3-Control encoding firefly luc
also served as a control for relative luc assay for
siRNAs against endogenous genes. Used siRNAs
against mammalian endogenous genes are: siVIM
[human vimentin]-269, -270, -596, -805, -812, -1128 and
-1261; siOct [mouse Oct4]-670, -797 and -821; siGRK4
[human G protein-coupled receptor kinase 4]-934;
siPLS3 [human plastin3, T-isoform]-1310, -1528 and
-1657; siCTLC [human clathrin heavy chain]-2416, -3114
and -4819; siKIF23 [human kinesin family member
23]-430; siTUBA2 [human tubulin alpha]-714; siITGA10
[human integrin alpha2]-2803; siMC4R [human melano-
cortin 4 receptor]-490; siCCNC [human cyclin C]-571.
Gene silencing by siRNAs against firefly luc (siLuc-36,
-309, -774 and 2-153) was carried out using phLuc-
Control, which encodes luc different from firefly luc.
siGY-441, an siRNA for GFP knockdown, used as an
siRNA control.

Calculation of thermodymanic parameters

Standard Gibbs free energy change (�G) and Tm were
calculated according to the nearest neighbor model (16)
and the thermodynamic values for RNA–RNA (17).
Dissociation constant (Kd) for the seed duplex was deter-
mined using the following formula, �G=–RTln(1/Kd),
where T was 298.15K. The calculation formula for Tm

is as follows: Tm={(1000��H)/[A+�S+ln(Ct/4)]}
�273.15+16.6log[Na+]. �H (kcal/mol), sum of nearest
neighbor enthalpy change. A, helix initiation constant
(–10.8). �S, sum of nearest neighbor entropy change
(17). R, gas constant (1.987 cal/deg/mol). Ct, total molec-
ular concentration of strand (100 nM). [Na+] was fixed at
100mM.

Microarray analysis

HeLa cells (1� 105 cells/ml) were inoculated into an indi-
vidual well culture plate 24 h prior to transfection. Cells
were transfected with 50 nM siRNA. Total RNA (3 mg)
was purified using RNeasy Kit (Qiagen) 24 h after trans-
fection and hybridized to Human Genome U133 Plus 2.0
GeneChip (Affymetrix) containing about 47 400 human
transcripts according to the manufacturer’s protocol.
RNA from mock-transfected cells, which treated with
transfection reagent in the absence of siRNA, was used
as a control. The transcript expression value was calcu-
lated using Microarray Suite 5.0 (MAS5) (18) with quan-
tile normalization (19); those transcripts with strong
enough hybridization signals to be called present (P)
were used in this study. To identify transcripts that were
downregulated on the array, the cumulative distribution
of expression changes for those messages with the site

versus those with no canonical site were compared. The
statistical significance of their dissimilarity was quantified
based on the P-value using Wilcoxon’s rank-sum test (6).

Motif analysis of 3’UTR and CDS

We mapped the probe sequences, which were taken
from the annotation table provided on the Affymetrix
Web site (http://www.affymetrix.com), to the RefSeq
human mRNA sequences (release 24) to identify the
target transcripts. We found 67 220 annotations for
human transcripts to be corresponded to 54 675 of the
probe sets. In microarray analyses using siVIM-270 and
siVIM-812, the number of transcripts called P by MAS5
was estimated at 19 856. Of 19 856, 16 783 that represented
RefSeq entries (25%) with the 30 UTR were considered
here. In the experiments using siCLTC-2416 and
siCLTC-4819, 17 321 of 20 673 transcripts defined as
P were analyzed. Seven nucleotide sequences matching
the seed region (nucleotides 2–8) of GS were assigned as
extracted 30 UTR or CDS sequences.

Quantitative RT–PCR (qRT–PCR)

qRT–PCR was carried out using an aliquot of total
RNA analyzed using the microarray. RNA was reverse-
transcribed using the SuperScript First-Strand Synthesis
System for RT–PCR (Invitrogen). The mixture of resultant
cDNA and SYBR Green PCR Master Mix (Applied
Biosystems) were incubated at 958C for 10min before the
PCR reaction. The levels of PCR products were monitored
with ABI PRISM 7000 sequence detection system and ana-
lyzed with ABI PRISM 7000 SDS software (Applied
Biosystems). Each reaction ran in triplicate. The expression
level of each sample was first normalized to the amount of
b-actin and then to the mock transfection control. Used
primer sets are listed in Supplementary Table S3.

RESULTS AND DISCUSSION

Variation in the efficiency of off-target effect according
to the seed sequence

To determine the relationship between siRNA sequences
and off-target effects, we introduced 26 pairs of cm and sm
target sequences into an expression reporter plasmid,
psiCHECK (Figure 1A and B) (14) and examined the
change in luc activity in transfected HeLa cells as a func-
tion of siRNA concentration (Figure 1C). psiCHECK
encodes the Renilla luc gene. Three tandem repeats of
cm or sm target sequences were introduced into the
region corresponding to the 30 UTR of the luc mRNA
to generate psiCHECK-cm or psiCHECK-sm, respec-
tively. The cm targets, 21 nt in length, were completely
complementary to the GS of siRNAs (Figure 1A), which
were arbitrarily chosen from the highly functional class I
siRNA (15), and used for determining the efficiencies of
intended gene silencing, basically RNA interference
(RNAi). Class I siRNA possesses A or U residues at posi-
tion 1, three to six A/U residues in nucleotide positions
2–7 and G/C at position 19 (15). The GS of any class I
siRNA is expected to be incorporated into RISC very
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effectively (15,20,21), such that RISC formation may not
be a rate-limiting step in class I-siRNA-dependent unin-
tended gene silencing. The sm sequence possesses complete
complementarity to the entire seed region (positions 2–8)
but not to the remaining non-seed region, positions 9–21
(Figure 1B), and was used for determining the efficiency of
seed-dependent unintended off-target effect. The sm and
cm sequences, along with homology to the corresponding
siRNA GS are shown in Supplementary Tables S1 and S2.
Under our experimental conditions, the content of luc
mRNA produced within cells was estimated at about
300 copies per ng of the total RNA, a value one-
hundredth of that found for b-actin mRNA. The luc
activities measured using different psiCHECK-sm and
-cm constructs targeted by the corresponding siRNAs
were almost proportional to the levels of mRNA
(Figure 1D), indicating that at least under these conditions
most, if not all, of the luc activity reduction due to not
only RNAi but also off-target effect is attributable to
siRNA-dependent luc mRNA degradation.

As anticipated, all 26 siRNAs examined exhibited high
activity for intended gene silencing at 50 nM (Figure 1C).
Even at 0.5 nM most, if not all, siRNAs used reduced the
activity of the luc gene with the cm target to less than
20%. In contrast, the off-target gene silencing calculated
using sm target was much less effective and more suscep-
tible to changes in siRNA concentration, with the excep-
tion of siVIM-805. Virtually no off-target effects were
induced by transfection with any of the 26 siRNAs at
0.05 nM. Only 5 of the 26 siRNAs applied at 0.5 nM
reduced luc activity to less than 35%. More than five
siRNAs did not bring about any appreciable off-target
effects even when the siRNA concentration for transfec-
tion was increased to 50 nM. The same RISC is considered
to be capable of causing both intended RNAi and unin-
tended off-target gene silencing (22). Thus, above findings
may indicate that variations in the efficiency of unintended
off-target gene silencing are due to a difference in the
interactions between the GS entrapped in RISC and
mRNA, i.e. a difference in the efficiency of seed duplex
formation. High complementarity in the non-seed region
in addition to that in the seed region is necessary for
intended gene silencing. A seed/non-seed swapping experi-
ment (Supplementary Figure S2) has shown that unlike
seed complementarity to target mRNA, complementarity
to the non-seed region is incapable of inducing any gene
silencing effects. Notably, siVIM-805 might be an excep-
tional siRNA that exerts intended gene silencing by a
mechanism similar to that for off-target gene silencing
(Figure 1C).

In our experiments, the base at the 50 end (position 1)
was always A or U, and complementary to its mRNA
counterpart. However, A/U pairing at position 1 may
not be important for unintended gene silencing. First,
the 50 end of the GS is considered to be embedded in a
pocket of Ago in the RISC (12,13). Second, little or no
contribution of A/U-pairing at position 1 to the seed
activity or RISC formation has been confirmed by various
experiments, including microarray analysis (15,23)
(Supplementary Figure S1).

Apparent correlation between seed-dependent
off-target effect and thermodynamic stability of the
siRNA seed duplex

Melting temperature (Tm) and standard free energy
change (�G) for the formation of the seed duplex
may be good measures for the thermodynamic stability
of the protein-free seed duplex. We first clarified their
relationship. As shown in Figure 2A, the calculated Tm

values of 26 seed duplexes in 100mM NaCl, which
varied from �108C to 368C, were negatively correlated
with the calculated �G values, which ranged from �16
to �7 kcal/mol. The correlation coefficient was estimated
at �0.95, indicating a very strong correlation. Therefore,
a seed duplex with a high Tm is generally considered to
be associated with a low �G value, and vice versa.
Figure 2B demonstrates the positive correlation between
relative luc activity compromised by the off-target effect
and the calculated �G of the protein-free seed duplex.
Shown in Figure 2C are the calculated Tm values of the
protein-free seed duplex, which were negatively corre-
lated with the compromised luc activity. Correlation
coefficients of the former and the latter, respectively,
were 0.69 and �0.72, indicating a close relationship
between the seed-dependent off-target effect and the
seed-duplex �G or Tm. The value for �G may be con-
verted to the dissociation constant using the formula
�G=–RTln(1/Kd) (24). Thereby, 15 Kd values were
calculated and are listed in Figure 2D. The highest Kd

value (CLTC-4819 seed-duplex with the highest �G,
�7.2 kcal/mol) was found to be more than 106 times
greater than the lowest one (CLTC-2416 seed-duplex
with the lowest �G, �15.5 kcal/mol). This indicates a
wide range of seed-duplex stability, which may account
for the strong siRNA-concentration dependency of the
off-target effect (Figure 1C). Thus, it may follow that
the degree of off-target effects is primarily governed by
the thermodynamic stability of duplex, 7 bp in length,
which is formed between the GS seed region and its
mRNA counterpart.
A considerable deviation was observed in luc activity

measurements shown in Figure 2B and C. This may be
due in part to differences in the non-seed sequence and/
or its counterpart in target mRNA, since the target
sequences that correspond to the non-seed region make
an appreciable contribution to target recognition by
miRNAs and/or siRNAs in microarray profiling (1,6,8)
(Supplementary Figure S1). The reporter assay using
eight different targets with common seed and different
non-seed sequences showed that off-target effects are
rather various, indicating possible involvement of siRNA
non-seed region and/or its target counterpart in off-target
effect (Supplementary Figure S3). However, correlation
between seed-dependent gene silencing activity of siRNA
used in this study (Figure 1C) and calculated Tm of pro-
tein-free seed duplex of them aligned in all possible 7-nt
sequences (47=16 384) may suggest that 21.58C serves
as a kind of benchmark Tm (Figure 3A), which may
discriminate almost off-target-free seed sequences from
off-target-positive ones.
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Genome-wide analysis of off-target gene silencing
determined by the siRNA seed duplex stability

To further confirm the notion that off-target gene silenc-
ing is determined primarily by seed duplex stability,
genome-wide expression profiling was carried out using
four class I siRNAs targeting human vimentin (siVIMs)
or clathrin heavy chain (siCLTCs) (Figure 4;
Supplementary Figures S4 and S5). The seed duplexes
generated by siVIM-270 and siCLTC-2416 have Tm

values in 100mM NaCl of 26.28C and 33.28C, respec-
tively, while those generated by siVIM-812 and siCLTC-
4819 are 8.88C and �10.38C, respectively. HeLa cells were
transfected with 50 nM siRNA and the changes in the

expression level of transcripts were analyzed after 24 h.
The reporter assay described above predicted that
siRNAs with high seed duplex Tm values (siVIM-270
and siCLTC-2416) may be good inducers, while those
with low Tm values (siVIM-812 and siCLTC-4819) may
be poor inducers of the off-target effect.

As anticipated, all four siRNAs used effectively reduced
the amount of vimentin and clathrin heavy chain
mRNA, to less than 20% (arrows in Figure 4A and B;
Supplementary Figure S5) as a result of intended RNAi
effect. In contrast, the off-target-dependent reduction
in the amount of mRNA depended significantly on the
Tm of the seed-duplex. A high level of off-target effects

Figure 2. Close relationship between efficiency of seed-dependent off-target gene silencing and the thermodynamic stability of the protein-free seed
duplex. (A) The calculated Tm for the seed duplex decreases with increasing changes in standard free-energy (�G) for seed duplex formation
(correlation coefficient, �0.95). (B) luc activity compromised by seed-dependent off-target gene silencing at 50 nM siRNA concentration
was positively correlated with �G (correlation coefficient, 0.69). The luc activity data were collected from Figure 1C. (C) Correlation between
seed-dependent gene silencing activity (luc activity) and the calculated Tm of the protein-free seed duplex. A set of luc activities compromised
by seed-dependent gene silencing at 50 nM siRNA concentration were collected from Figure 1C. Tm value of the protein-free seed region (positions
2–8) was calculated using the nearest neighbor method. Relative luc activity and calculated Tm were correlated with each other and had a
coefficient of �0.72. (D) List of calculated dissociation constants for protein-free seed duplexes. �G was converted to Kd using the formula
�G=–RTln(1/Kd).
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was evident in the case of transfection with siVIM-270
(Figure 4C) and siCLTC-2416 (Supplementary
Figure S4A), which were predicted as good off-target
inducers. The expression levels of the transcripts with
seed complementary sequences (positions 2–8 of siRNA
guide strand) in 30 UTRs were clearly reduced by
both siRNAs in common, although the transcripts
with complementarities in the other positions were
not changed at least coincidentally (Supplementary
Figure S1), in a manner consistent with the previous
reports (3–6). Transfection with siVIM-812 (Figure 4D)

and siCLTC-4819 (Supplementary Figure S4B) that were
predicted as poor off-target inducers exhibited little off-
target effects (Figure 4E, Supplementary Figure S4C).
Results from microarray quantitative analysis were
essentially identical to those obtained by qRT–PCR
(Supplementary Figure S6). We conclude that the level
of off-target gene silencing is determined by the thermo-
dynamic stability of the seed duplex formed between the
siRNA GS and the target mRNA.
Furthermore, in accordance with the recent papers

described that not only 30 UTR but also CDS is miRNA
target (25,26), our (Supplementary Figure S1) and others’
(6) microarray analyses indicated that seed-dependent
off-target silencing effects are also observed in transcripts
containing seed complementary sequences in CDSs,
although the effects were marginal. As in the case of 30

UTR, the off-target effects by the transfection of siRNAs
with low thermodynamic stabilities of seed duplexes
(siVIM-812 and siCLTC-4819) were reduced in the tran-
scripts with seed complementarity in CDSs (data not
shown) compared to the results of siRNAs with high sta-
bilities (siVIM-270 and siCLTC-2416; Supplementary
Figure S1D and F). Thus, the thermodynamic stability
of the seed duplex might be basic determinant of off-
target silencing in both CDSs and 30 UTRs, although
the mechanism of marginal seed-dependent silencing
effects in CDSs remains unknown.
The miRbase includes 733 human miRNA sequences

(27). Our calculation indicated that 546 of the 733 were
capable of providing seed duplexes of which Tm values are
greater than 21.58C (Figure 3B), suggesting that about
75% of miRbase miRNAs may exert relatively strong
seed-dependent gene silencing.

Elimination of seed-dependent off-target gene silencing
by G:U pairing

G:U pairing is not typical of Watson–Crick pairing, which
consists of G:C and A:U pairs in the case of RNA (28).
G:U pairs were frequently incorporated into RNA sec-
ondary structures, probably because the standard free-
energy change for G:U pair formation is almost equivalent
to that for A:U pair formation (28) (Supplementary
Table S4). However, array analysis may suggest that
G:U pairing causes a virtually complete elimination of
the off-target effect (Figure 5) (8). To extend this point,
G:U pairing mutations were introduced into the VIM-270
seed-duplex (Figure 6). Both target sequence and siRNA
mutations were introduced by chemical oligonucleotide
synthesis. The luc mRNA with a mutated target was
expressed using psiCHECK. Note that all mutations pro-
ducing G:U pairing at positions 2, 3 and 7, are target
sequence mutations, which may not influence the effi-
ciency of RISC formation (22). Figure 6 shows clearly
that introduction of any G:U pairing to the seed duplex
results in an almost complete loss of the off-target effect.
The second mutation was introduced into the opposite
strand to generate a phenotypic revertant of Watson–
Crick pairing (Figure 6C–G). The off-target effect was
almost completely recovered, irrespective of differences
in location of the mutation within the seed duplex.

Figure 3. Correlation between seed-dependent gene-silencing activity
and calculated Tm of protein-free seed duplex. Gene-silencing activity
was measured using relative luc activity in HeLa cells transfected with
psiCHECK-sm and cognate siRNAs at 50 nM as shown in Figure 1C.
Tm of the protein-free seed region (positions 2–8) was determined using
nearest neighbor method (Figure 2C). (A) All possible 7-nt seed
sequences (47=16 384) were ordered as a function of GC content
and Tm values of their ds counterparts. Note that, because of its defini-
tion, class I siRNA cannot possess more than four GC in the seed
region. Blue: combinations of target and siRNA, giving less than
50% relative luc activity. Red: combinations of target and siRNA
with little or no off-target effect (luc activity >50%). Dotted line at
21.58C may correspond to 50% luc activity reduction. (B) Tm distribu-
tion of 733 human microRNAs registered in miRbase. Ordinate repre-
sents calculated seed-duplex Tm. Abscissa represents percentage.
Seventy-five percent of 565 siRNAs registered was estimated to be
associated with Tm more than 21.58C.
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In contrast to the off-target effect, G:U pairing afforded
virtually no effect on intended gene silencing (Figure 6),
indicating an apparent difference between the molecular
mechanisms of intended RNAi and unintended off-target
gene silencing.
As shown in Supplementary Table S4, the difference in

�G values between the G:U pair-containing seed duplex

and its cognate with an A:U pair is very small, if at all,
indicating that a difference in �G, or thermodynamic sta-
bility of seed duplex, cannot account for a catastrophic
change in off-target effects due to a G:U/A:U replacement.
The substitution of any Watson–Crick pair by a G:U pair
has been reported to result in structural perturbation,
regardless of the sequence (28). Structural analysis of the

Figure 4. Microarray-based off-target-effect profiling and data analysis. Profiles of transcript downregulation by (A) siVIM-270 and (B) siVIM-812.
The cumulative distribution of transcripts from cells treated with (C) siVIM-270 and (D) siVIM-812, are shown as log2 of fold change to mock
transfection. The blue line (C, D) indicates the cumulative fraction of transcripts with one or more sequence complementary to the siRNA seed in the
30 UTR. The gray line (C, D) shows transcripts with no seed complementarity. Distributions of log fold change, defined as the log2 of expression in
siVIM-270- or siVIM-812-transfected cells over that in mock-transfected cells, for mRNAs lacking seed complementarity are 0.221� 0.001 (C) and
0.016� 0.005 (D), respectively. (E) Comparison of microarray profiles of transcripts downregulated by siVIM-270 and siVIM-812. Only transcripts
with 30 UTR complementarity to two or more than two siRNA seed sequences were examined. Ordinate represents fraction. Abscissa represents
signal intensity obtained after siVIM-270 treatment divided by that after siVIM-812 treatment. The blue and red bars denote the distribution of
transcripts with 30 UTR complementary to the VIM-812 and VIM-270 seed sequence, respectively. The black bar represents transcripts with seed
complementarity to neither siVIM-270 nor siVIM-812.
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Aquifex aeolicus Ago has shown that the phosphodiester
backbone of five consecutive residues corresponding
to position 2–6 of the GS, which adopts a helical pitch,
has extensive surface and charge complementarity with
the side chains in the Mid and PIWI domains of Ago
(12,13). Thus, these structural constraints on the GS
seed may make it difficult to form any G:U pairing
between target mRNA and the GS seed binding to
Ago in RISC.

CONCLUSION

We found that the seed-dependent off-target effect is
highly correlated with the thermodynamic stability in the
duplex formed between the seed region of the siRNA
guide strand and its target mRNA. �G and Tm for the
formation of the seed duplex, respectively, are positively
and negatively correlated with seed-dependent gene silenc-
ing activity. The seed-dependent off-target gene silencing
effect is almost completely eliminated with G:U pairing in
the seed duplex. In this case, off-target effect is avoided
probably because of the structural perturbation of seed
duplex but not seed duplex stability.

Unlike the off-target effect, intended gene silencing,
RNAi, was significantly tolerant to not only the presence
of a G:U pair in the seed region (see e.g. Figure 6A and B),
but also to changes in siRNA concentration (Figure 1C).

We therefore consider that for RNAi, which requires a
near perfect match between target mRNA and the
siRNA GS, the first recognition of mRNA by the GS
seed arm and subsequent target recognition by the non-
seed region of GS are so highly cooperative that the
second proof-reading process can easily surmount the
G:U pairing problem in the initial mRNA nucleation
process.
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Figure 5. Microarray analysis of the effect of G:U pairing in the seed duplex. Two siRNAs, (A) siVIM-270 and (B) siCLTC-2416, with high Tm

values (26.28C and 33.28C, respectively) were used at 50 nM for transfection. Together, (A) and (B) indicate that transcripts in which the 30 UTR is
forming the seed duplex consisting only of Watson–Crick pairing are capable of exerting a significant off-target effect. Transcripts forming a G:U
pair-containing seed duplex are associated with virtually no off-target effect. Nucleotide sequences of transcripts analyzed are shown in the lower
margin. Red denotes transcripts forming a seed duplex consisting only of Watson–Crick base pairs [1043 transcripts in (A), 97 in (B)]. Other colors
represent transcript groups that are capable of forming a G:U pair-containing seed duplex in the 30 UTR. The numbers of transcripts are as follows:
in (A), 1076 blue, 104 sky blue, 331 green and 931 yellow; in (B), 114 blue, 1226 sky blue and 157 green. Solid vertical line denotes Watson–Crick
pairing. Dotted line denotes G:U pairing.
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Figure 6. Reporter plasmid analysis of the effect of G:U pairing in the seed duplex. Three copies of cm or sm targets were introduced into
psiCHECK. Blue bars represent silencing of cm targets. Red bars refer to off-target gene (sm-target) silencing. Bases replaced by the first mutation
are colored in red, while those replaced by the second mutation are colored in green. (A) Control experiment. The siVIM-270-dependent silencing of
luc mRNA with VIM-270 completely matched (cm) or seed-matched (sm2) targets. Note the absence of any G:U pairing from the seed duplex. (B)
The C residue opposite position 3 of the GS in the VIM-270-cm or VIM-270-sm2 targets was replaced with U to generate VIM-270m3-cm or VIM-
270m3-sm2. This m3 mutation introduces a U:G pair at position 3 of both the cm and sm seed duplexes. Although cm-target silencing was not
affected by the mutation, sm-target silencing (off-target effect) was almost completely abolished. (C) G!A and C!U substitutions were introduced
at position 3 of siVIM-270 GS and its counterpart in the passenger strand (PS), respectively, as the second mutations to generate a siRNA mutant,
siVIM-270m3. Thus, U:A pairing was introduced at ds position including nucleotide 3 of the GS to generate a phenotypic Watson–Crick pairing
revertant. A significant recovery of off-target effect is evident. (D–G) Four additional examples of G:U pairing mutation and phenotypic reversion.
Mutations were introduced into VIM270-cm, VIM270-sm or siVIM-270 to generate pairing mutants of the seed duplex at GS positions (D) 6, (E) 5,
(F) 2 and (G) 7. In all cases examined, the first mutation (G:U pair introduction in the seed region) abolished nearly all off-target silencing activity,
which was almost completely recovered by the second mutation, which regenerated Watson–Crick pairing.
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